rw-book-cover

Metadata

Highlights

Though he nods at analysts’ curiosity and their ability to communicate, the thrust of his argument is that Jamie misjudges what it means to be technical. (View Highlight)

Analytics isn’t primarily technical. While technical skills are useful, they’re not what separate average analysts from great ones. When someone questions if we’re real engineers, we shouldn’t feel the need to pull out our technical credentials. We should instead say, “So what? That’s not our job.” (View Highlight)

Building a fancy model to predict churn is complex; reasoning about what makes that model useful and what makes it dangerous is hard (View Highlight)

Down one path, analytics engineering becomes the barrier between engineering and analytics. Rather than needing to be an impossible combination of statistician, developer, and business expert, analysts can simply be great critical thinkers. Rather than looking for people with an advanced degree in a quantitative field, 5 years of experience with Python, familiarity with AWS, and a passion for optimizing the conversion rates of white paper download forms, data teams can enthusiastically hire creative historians, sociologists, and political scientists5 who are exceptional communicators rather than mathematicians who are passable coders. With the help and support of analytics engineers, analysts can learn the technical skills they need (just as I did at Yammer), and focus on being the curious puzzle solvers they are. (View Highlight)

Silicon Valley is infatuated with engineers as “creators;” companies talk about searching for the 10x engineer but not the 10x analyst, sales rep, support agent, or even CEO; there’s a non-trivial salary gap between analyst and data scientist. (View Highlight)